Application of NO Reduction Dynamical Model in Selective Non-catalytic Reduction Denitration System Based on Biomass

نویسندگان

  • Feng Ran
  • Bingshuai Wang
  • Licui Qin
چکیده

In recent years, studies on denitration by applying biomass reburning method has drawn the attention of many researchers due to the characteristics of low sulfur and nitrogen content, high volatile, high ash focal activity, zero CO2 net emissions, etc. Based on Chemkin software and selective non-catalytic reduction (SNCR) denitration chemical kinetic model, this paper conducted SNCR denitration chemical kinetic modeling. And the results showed that: with the increase of residence time, under the different initial concentration of NO, SNCR denitration efficiency tends to stabilize after the first increase. Moreover, the higher the initial concentration of NO, the longer the residence time which is required to achieve the greatest denitration efficiency. With the increase of ammonia nitrogen ratio, SNCR denitration efficiency increases step by step. When the normalized stoichiometric ratio (NSR) is greater than 1.5, the denitration efficiency is at a basic stable state. Under the same conditions, simulation results of the SNCR results agree well with the test results. Therefore, it can be concluded that carrying out the SNCR denitration chemical dynamics simulation using Chemkin software can provide a reference for tests and mechanism researches on SNCR, biomass reburning and advanced reburning denitration.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Selective Catalytic Reduction of CuO/SiO2 Nano-composites towards NO Reduction in Gas-phase

The xerogel samples were prepared by hydrolysis and condensation of tetraethyl orthosilicate (TEOS) by the sol-gel method. In this investigation, a new molar ratio of H2O/TEOS was determined to be 11.7. Also, the necessary amounts of tri-hydrated copper nitrate and penta-hydrated copper sulfate were added to the solution in such a manner that the concentration of the copper oxide in final solut...

متن کامل

Optimization and Modeling of CuOx/OMWNT’s for Catalytic Reduction of Nitrogen Oxides by Response Surface Methodology

A series of copper oxide (CuOx) catalysts supported by oxidized multi-walled carbon nanotubes (OMWNT’s) were prepared by the wet impregnation method for the low temperature (200 °C) selective catalytic reduction of nitrogen oxides (NOx) using NH3 as a reductant agent in the presence of excess oxygen. These catalysts were characterized by FTIR, XRD, SEM-EDS, and H2-TPR meth...

متن کامل

Modeling Transport Phenomena in Selective Catalytic Reductant Catalytic Converter with NH3 as Reductant for NO Degradation

In the current study, reduction of nitrogen oxide from exhaust gas in the presence of NH3 as reductant on selective catalytic reductant (SCR) impregnated catalytic converter was simulated using Comsol© software. Mass transfer (one-dimensional) and heat transfer (three-dimensional) governing equations were taken into account to model the unsteady state behavior of the catalytic converter. Modeli...

متن کامل

Assessment of pollution control technologies by using decision support systems

  Background and aims: Air pollution reduction is important in health being of people and environment. Applying of an effective and efficient strategy is key consideration in facing with environmental challenges of management and control of air pollution. Recently, the main effort of environmental researchers is finding low cost and effective methods to control of environmental pollutants. Po...

متن کامل

Nitrous oxide (N2O) emissions from waste and biomass to energy plants.

Following the Kyoto protocol with respect to reducing emissions of greenhouse gases emissions, and EU energy policy and sustainability in waste management, there has been an increased interest in the reduction of emissions from waste disposal operations. From the point of view of nitrous oxide (N2O) emissions, waste incineration and waste co-combustion are very acceptable methods for waste disp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016